
CS686:
Path Planning for Point Robots

Sung-Eui Yoon
(윤성의)

Course URL:
http://sgvr.kaist.ac.kr/~sungeui/MPA

2

Class Objectives
● Motion planning framework

● Representations of robots and space
● Discretization into a graph
● Search methods
● Ch. 2 of my book

● Last time
● Class overview and grading policy w/ HWs:

research oriented course
● Half lectures and half presentations from

students

3

Some Announcement
● Student stat.

● CS (70%), Robotics (30%), no ME/EE (this
year)

● Expect to see diverse topics!!!
● Think about possible team mates

● 1 member to 3 members for each team

● Quiz on the prior homework
● https://forms.gle/9i8sh6eF6hiKVw5JA

4 Courtesy of Prof. David Hsu

5

free space

start

goal

free path

Problem

6

semi-free path

Problem

7

Types of Path Constraints
● Local constraints

● Lie in free space
● Global constraints

● Have minimal length
● Differential constraints

● Cannot change the car
orientation instantly

See Ch. 4 (Kinematic Car Model) of my draft
http://sgvr.kaist.ac.kr/~sungeui/mp/

8

Configuration Space:
Tool to Map a Robot to a Point

Workspace Configuration space
(C-Space)

9

Continuous representation
(configuration space formulation)

Discretization
(random sampling, processing critical geometric events)

Graph searching
(blind, best-first, A*)

Motion-Planning Framework

10

11

Visibility Graph

● A visibility graph is a graph such that
● Nodes: s, g, or obstacle vertices
● Edges: An edge exists between nodes u and v if

the line segment between u and v is an
obstacle edges or it does not intersect the
obstacles

g

s

12

Visibility Graph

● A visibility graph
● Introduced in the late 60s
● Can produce shortest paths in 2-D

configuration spaces

g

s

13

Simple Algorithm
● Input: s, q, polygonal obstacles
● Output: visibility graph G

1: for every pair of nodes u, v
2: if segment (u, v) is an obstacle edge then
3: insert edge (u, v) into G;
4: else
5: for every obstacle edge e
6: if segment (u, v) intersects e
7: go to (1);
8: insert edge (u, v) into G;
9: Search a path with G using A*

// check collisions

14

Computation Efficiency
1: for every pair of nodes u, v
2: if segment (u, v) is an obstacle edge then
3: insert edge (u, v) into G;
4: else
5: for every obstacle edge e
6: if segment (u, v) intersects e
7: go to (1);
8: insert edge (u, v) into G;

● Simple algorithm: O(n3) time
● More efficient algorithms

● Rotational sweep O(n2 log n) time, etc.
● O(n2) space

O(n2)
O(n)

O(n)

15

Continuous representation
(configuration space formulation)

Discretization
(random sampling, processing critical geometric events)

Graph searching
(blind, best-first, A*)

Motion-Planning Framework

16

Graph Search Algorithms
● Breadth, depth-first, best-first
● Dijkstra’s algorithm
● A*

17

18

19

20

Traverse the graph by using the queue,
resulting in the level-by-level traversal

21

Dijkstra’s Shortest Path
Algorithm
● Given a (non-negative) weighted graph,

two vertices, s and g:
● Find a path of minimum total weight between

them
● Also, find minimum paths to other vertices
● Has O (|V| lg|V| + |E|), where V & E refer

vertices & edges

22

Dijkstra’s Shortest Path
Algorithm
● Set S

● Contains vertices whose final shortest-path cost has
been determined

● DIJKSTRA (G, s):
Input: G is an input graph, s is the source
1. Initialize-Single-Source (G, s)
2. S empty
3. Queue Vertices of G
4. While Queue is not empty
5. Do u min-cost from Queue
6. S union of S and {u}
7. for each vertex v in Adj [u]
8. do RELAX (u, v)

23

Dijkstra’s Shortest Path
Algorithm

0

3

10

1
∞

∞
0

3

10

1
3

10
0

3

10

1
3

4

Yellow vertices are in a set with shortest costs
White vertices are in the queue.
Shaded one is chosen for relaxation.

Compute optimal cost-to-come at each iteration

gs gs gs

24

A* Search Algorithm
● An extension of Dijkstra’s algorithm based

on a heuristic estimate
● Conservatively estimate the cost-to-go from a

vertex to the goal
● The estimate should not be greater than the

optimal cost-to-go
● Sort vertices based on “cost-to-come + the

estimated cost-to-go”
● Can find optimal solutions

with fewer steps

free space

s

g

25

K* Algorithm (Video)
● Recursive Path Planning Using Reduced

States for Car-like Vehicles on Grid Maps
● IEEE Transactions on Intelligent Transportation

System

● A* and its variants are quite commonly
used for its optimality and high
performance

26

27

Computational Efficiency
● Running time O(n3)

● Compute the visibility graph
● Search the graph

● Space O(n2)

● Can we do better?
● Lead to classical approaches such as roadmap

28

Class Objectives were:
● Motion planning framework

● Representations of robots and space
● Discretization into a graph
● Search methods
● Ch. 2 of my book

29

Homework
● Browse 2

ICRA/IROS/RSS/CoRL/WAFR/TRO/IJRR
papers
● Submit it online before the Tue. Class
● https://forms.gle/2jdXkgYu5snyAb3s8

● Example of a summary (just a paragraph)
Title: XXX XXXX XXXX
Conf./Journal Name: ICRA, 2020
Summary: this paper is about accelerating the
performance of collision detection. To achieve its goal,
they design a new technique for reordering nodes,
since by doing so, they can improve the coherence
and thus improve the overall performance.

30

Valid Papers for Paper
Presentation
● Related to the course theme

● Top-tier conf/journals
● No arxiv paper, unless it has meaningful

citation counts (say, 10 per year)

● Recent ones
● Published at 2016~2020

31

Homework for Every Class
● Go over the next lecture slides
● Come up with one question on what we

have discussed today and submit at the end
of the class
● 1 for typical questions
● 2 for questions with thoughts or that surprised

me

● Write a question two times before the mid-
term exam
● https://forms.gle/R2ZcS9pZ9me9RzmKA

32

Next Time….
● Classic path planning algorithms

